🤿 Układ Równań Ma Nieskończenie Wiele Rozwiązań Jeśli
Odpowiedź: Szczegółowe wyjaśnienie: Nie ma kwadratów - rozwiązuję układ zgodnie z zapisem: y = x +3. x + 3 = y. y = x +3. y = x +3. to jest ta sama prosta - układ ma nieskończenie wiele rozwiązań
Jeżeli rz A 6= rz [A|B], to układ nie ma rozwiązania (sprzeczny) Jeżeli rz A = rz [A|B] = n, to układ ma dokładnie jedno rozwiązanie (oznaczony) Jeżeli rz A = rz [A|B] < n, to układ ma nieskończenie wiele rozwiązań zależnych od n −r parametrów (nieoznaczony) Alicja Janic Wykład IX-X: Układy równań liniowych
http://akademia-matematyki.edu.pl/ Układ równań {4x+2y=10 i 6x+ay=15 ma nieskończenie wiele rozwiązań, jeśli: Źródło:Oficyna Edukacyjna. Zbiór zadań do
Podział klasy na trzy grupy, każda grupa dostaje do rozwiązania układ równań,anastępnie lider grupy prezentuje rozwiązanie przy tablicy. Grupa I −+= + =− 5 2 2 x y x y jedno rozwiązanie: x = - 4, y = 1 – układ oznaczony Grupa II − + =− −= 4 2 6 2 3 x y x y Nieskończenie wiele rozwiązań – układ nieoznaczony Grupa III
4x+2y=10 /:2 2x+y=5 6x+ay=15 aby ten układ równań miał nieskończenie wiele rozwiązań te proste muszą być identyczne więc a=3 jeśli później podzieliy obustronnie przez 3 to otrzymamy taką samą prostą jak pierwsza ;)
to układ równań ma dokładnie jedno rozwiązanie (XNáDGR]QDF]RQ\). Jeżeli rzędy macierzy układu równań oraz macierzy rozszerzonej są sobie równe, ale są mniejsze od liczby niewiadomych rz A = rz C < n, to układ równań ma nieskończenie wiele rozwiązań (XNáDGQLHR]QDF]RQ\ ).
Układy równań - liczba rozwiązań: ceny owoców (2 z 2) Rozwiązania układów równań: niesprzeczny kontra sprzeczny. Rozwiązania układów równań: nieoznaczony kontra oznaczony. Liczba rozwiązań układu równań. Graficzne wyznaczanie liczby rozwiązań układu równań. Graficzne wyznaczanie liczby rozwiązań układu równań.
Graficznie są to dwie funkcje liniowe, której wykresy pokrywają się ze sobą. Stąd nieskończenie wiele punktów wspólnych, czyli rozwiązań. Układ równań sprzeczny nie ma rozwiązań. Graficznie są to dwa wykresy funkcji liniowej równoległe do siebie – nie mające punktów wspólnych. Omówienie pojęcia: Funkcja liniowa, a
Rozwiązanie zadania z matematyki: Układ równań 4x+2y=106x+ay=15ma nieskończenie wiele rozwiązań, jeśli{A) a=-1}{B) a=0}{C) a=2}{D) a=3}, Z parametrem, 9767410
Układ równań ma nieskończenie wiele rozwiązań, jeśli jedno równanie jest przemnożeniem przez jakąś liczbę równania drugiego. Jeśli drugie równanie przemnożymy przez -2, to współczynniki przy x w obu równaniach będą takie same.
Układ równań jest nieoznaczony, ma nieskończenie wiele rozwiązań. b) Musimy wyznaczyć niewiadomą x lub y z dowolnego równania. Wyznaczymy niewiadomą y w pierwszym równaniu. Po wyznaczeniu y wstawiamy otrzymane wyrażenie, czyli do drugiego równania w miejsce niewiadomej y. Otrzymaliśmy sprzeczność.
Układ ten ma dokładnie jedno rozwiązanie (jest oznaczony), które możemy wyznaczyć za pomocą wzorów Cramera: i Jeśli wyznacznik główny i i , to układ równań ma nieskończenie wiele rozwiązań (jest nieoznaczony). Jeśli wyznacznik główny i ( lub ), to układ równań nie ma rozwiązań (jest sprzeczny). Przykład 1
a9BNh16. BlackBomb Użytkownik Posty: 33 Rejestracja: 18 mar 2009, o 17:06 Płeć: Mężczyzna Podziękował: 22 razy Układ równań nieoznaczony Mam pytanie, jeśli wyznacznik główny wychodzi mi 0, a pozostałe wyznaczniki wychodzą mi 0 to mam do czynienia z układem który ma nieskończenie wiele rozwiązań. Jeżeli polecenie każe znaleźć rozwiązanie układu to mam szukać jakiegoś przykładowego rozwiązania czy "nieskończenie wiele" wystarcza jako odpowiedź? bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Układ równań nieoznaczony Post autor: bartek118 » 2 lip 2014, o 13:19 Który ma wiele rozwiązań (nie musi mieć nieskończenie wiele). Ani to, ani to. Wówczas musisz znaleźć i opisać wszystkie rozwiązania układu. Hydra147 Użytkownik Posty: 268 Rejestracja: 31 mar 2013, o 20:23 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 1 raz Pomógł: 82 razy Układ równań nieoznaczony Post autor: Hydra147 » 2 lip 2014, o 13:22 Zapewne masz znaleźć WSZYSTKIE jego rozwiązania. Np. mając dany układ: \(\displaystyle{ \begin{cases} y=x+1 \\2x=2y-2 \end{cases}}\) musisz napisać, że jego rozwiązaniem są wszystkie pary \(\displaystyle{ (x,y)}\) takie, że: \(\displaystyle{ \begin{cases} x= \alpha \\ y= \alpha +1 \end{cases}}\) dla \(\displaystyle{ \alpha \in \mathbb{R}}\). BlackBomb Użytkownik Posty: 33 Rejestracja: 18 mar 2009, o 17:06 Płeć: Mężczyzna Podziękował: 22 razy Układ równań nieoznaczony Post autor: BlackBomb » 2 lip 2014, o 14:02 Rozumiem, czyli w przypadku takiego układu: \(\displaystyle{ \begin{cases} x-y+2z=0 \\ -x+2y-z=1 \\ x+y+4z=2 \end{cases}}\) Mam zapisać: \(\displaystyle{ \begin{cases} x= -\alpha \\ y= -5\alpha +2 \\ z= -4\alpha \end{cases}}\) albo nie, chyba nie do końca rozumiem jak wykonać polecenie dla 3 niewiadomych. a4karo Użytkownik Posty: 20397 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Układ równań nieoznaczony Post autor: a4karo » 2 lip 2014, o 14:09 bartek118 pisze:Który ma wiele rozwiązań (nie musi mieć nieskończenie wiele). Ani to, ani to. Wówczas musisz znaleźć i opisać wszystkie rozwiązania układu. Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie 2 lip 2014, o 13:14 --BlackBomb pisze:Rozumiem, czyli w przypadku takiego układu: \(\displaystyle{ \begin{cases} x-y+2z=0 \\ -x+2y-z=1 \\ x+y+4z=2 \end{cases}}\) Mam zapisać: \(\displaystyle{ \begin{cases} x= -\alpha \\ y= -5\alpha +2 \\ z= -4\alpha \end{cases}}\) albo nie, chyba nie do końca rozumiem jak wykonać polecenie dla 3 niewiadomych. To, co napisałeś nie jest rozwiązaniem podanego układu (wstaw rozwiązanie do pierwszego równania). Dodaj drugie równanie do pierwszego i trzeciego, a przekonasz się, że będą one takie same. Zatem de facto masz dwa równania z trzema niewiadomymi. Przyjmij jedna z nich za parametr i rozwiąż ze względu na pozostałe dwie zmienne. Hydra147 Użytkownik Posty: 268 Rejestracja: 31 mar 2013, o 20:23 Płeć: Mężczyzna Lokalizacja: Polska Podziękował: 1 raz Pomógł: 82 razy Układ równań nieoznaczony Post autor: Hydra147 » 2 lip 2014, o 14:58 a4karo pisze:Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie wiele. Dla ścisłości: układ równań liniowych . Np. układ: \(\displaystyle{ \begin{cases} x^2=9 \\ y^2=4 \end{cases}}\) Ma dokładnie 4 rozwiązania: \(\displaystyle{ (x,y)=(3,2),(3,-2),(-3,2),(-3,-2)}\). bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Układ równań nieoznaczony Post autor: bartek118 » 2 lip 2014, o 15:19 a4karo pisze:Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie wiele. Dla ścisłości - nie jest to prawda nawet dla układów liniowych. Michalinho Użytkownik Posty: 495 Rejestracja: 17 wrz 2013, o 16:13 Płeć: Mężczyzna Lokalizacja: Chełm Podziękował: 11 razy Pomógł: 104 razy Układ równań nieoznaczony Post autor: Michalinho » 2 lip 2014, o 17:26 bartek118 pisze:Dla ścisłości - nie jest to prawda nawet dla układów liniowych. Dla ścisłości: chyba jednak tak. Interpretacją geometryczną rozwiązania układu równań jest punkt wspólny wykresów wszystkich równań w tym układzie, a skoro do każdej prostej na wykresie należą co najmniej dwa te same punkty to opisują one tą samą prostą więc mamy nieskończenie wiele rozwiązań. Proszę o kontrprzykład. a4karo Użytkownik Posty: 20397 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Układ równań nieoznaczony Post autor: a4karo » 2 lip 2014, o 17:53 bartek118 pisze:a4karo pisze:Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie wiele. Dla ścisłości - nie jest to prawda nawet dla układów liniowych. Udowodnij sobie taie (nietrudne ) twierdzenie: Jeżeli \(\displaystyle{ x_1}\) i \(\displaystyle{ x_2}\) sa rozwiązaniami układu równań liniowych \(\displaystyle{ Ax=b}\), to \(\displaystyle{ tx_1+(1-t)x_2}\) też jest rozwiązaniem dla dowolnego rzeczywistego \(\displaystyle{ t}\) -- 2 lip 2014, o 16:54 --Hydra147 pisze:a4karo pisze:Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie wiele. Dla ścisłości: układ równań liniowych . Np. układ: \(\displaystyle{ \begin{cases} x^2=9 \\ y^2=4 \end{cases}}\) Ma dokładnie 4 rozwiązania: \(\displaystyle{ (x,y)=(3,2),(3,-2),(-3,2),(-3,-2)}\). @Hydra Dla ścisłości: przeczytaj pierwszy post i powiedz jaki jest wyznacznik główny Twojego układu -- 2 lip 2014, o 17:01 --BlackBomb pisze:Mam pytanie, jeśli wyznacznik główny wychodzi mi 0, a pozostałe wyznaczniki wychodzą mi 0 to mam do czynienia z układem który ma nieskończenie wiele rozwiązań. Jeżeli polecenie każe znaleźć rozwiązanie układu to mam szukać jakiegoś przykładowego rozwiązania czy "nieskończenie wiele" wystarcza jako odpowiedź? Rozumem, że mówisz o układzie n równań z n niewiadomymi. a "pozostałe wyznaczniki" to minory \(\displaystyle{ n\times n}\) z macierzy rozszerzonej. Twoje stwierdzenie jeśli wyznacznik główny wychodzi mi 0, a pozostałe wyznaczniki wychodzą mi 0 to mam do czynienia z układem który ma nieskończenie wiele rozwiązań nie jest prawdziwe. Układ \(\displaystyle{ \begin{cases} 0x+0y+0z=1\\ 0x+0y+0z=1\\ 0x+0y+0z=0 \end{cases}}\) spełnia warunki, a jest oczywiście sprzeczny. BlackBomb Użytkownik Posty: 33 Rejestracja: 18 mar 2009, o 17:06 Płeć: Mężczyzna Podziękował: 22 razy Układ równań nieoznaczony Post autor: BlackBomb » 2 lip 2014, o 20:17 To nie wiem, brałem to stąd ... Przykładowe rozwiązanie to np: \(\displaystyle{ \begin{cases} x= 0 \\ y= \frac{2}{3} \\ z= \frac{1}{3} \end{cases}}\) Nie wiem w jaki sposób mam przyjąć jedną daną za parametr i to rozwiązać. Przyjąć z tego co rozumiem mogę, że x jest moim parametrem, więc z tych dwóch: \(\displaystyle{ \begin{cases} x=2-y-4z \\ x=-1+2y-z \end{cases}}\) Chyba nie do końca rozumiem jak to wykazać, czy ktoś ma jakieś podobne zadanie na którym mógłbym zobaczyć o co chodzi? a4karo Użytkownik Posty: 20397 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Układ równań nieoznaczony Post autor: a4karo » 2 lip 2014, o 20:40 Wróćmy do Twojego przykłądu: \(\displaystyle{ \begin{cases} x-y+2z=0 \\ -x+2y-z=1 \\ x+y+4z=2 \end{cases}}\) Rząd macierzy głównej i rozszerzonej sa równe 2 (wszystkie wyznaczniki 3x3 znikaja). Weżmy pierwsze i trzecie rónanie i potraktujmy \(\displaystyle{ z=\alpha}\) jako parametr. Wtedy \(\displaystyle{ \begin{cases} x-y=-2\alpha \\ x+y=2-4\alpha \end{cases}}\) Rozwiąż ten układ ze względu na \(\displaystyle{ x}\) i \(\displaystyle{ y}\) (wynik będzie zależał od \(\displaystyle{ \alpha}\)) bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Układ równań nieoznaczony Post autor: bartek118 » 2 lip 2014, o 21:37 a4karo pisze:bartek118 pisze:a4karo pisze:Dla ścisłości: ukłąd równań który ma więcej niż jedno rozwiązanie, ma ich nieskończenie wiele. Dla ścisłości - nie jest to prawda nawet dla układów liniowych. Udowodnij sobie taie (nietrudne ) twierdzenie: Jeżeli \(\displaystyle{ x_1}\) i \(\displaystyle{ x_2}\) sa rozwiązaniami układu równań liniowych \(\displaystyle{ Ax=b}\), to \(\displaystyle{ tx_1+(1-t)x_2}\) też jest rozwiązaniem dla dowolnego rzeczywistego \(\displaystyle{ t}\) A to niby czemu ma być nieskończenie wiele tych \(\displaystyle{ t}\)? Czemu niby mają być rzeczywiste? Banalny przykład: \(\displaystyle{ \begin{cases} x-y = 0 \\ x+y=0 \end{cases}}\) jako układ nad ciałem \(\displaystyle{ \mathbb{F}_2}\). Ma on dokładnie dwa rozwiązania: \(\displaystyle{ (x_1, y_1) = (0,0)}\) oraz \(\displaystyle{ (x_2, y_2) = (1,1)}\). Ponadto wyznacznik układu jest zerowy, a jednak ma tylko skończenie wiele rozwiązań. BlackBomb Użytkownik Posty: 33 Rejestracja: 18 mar 2009, o 17:06 Płeć: Mężczyzna Podziękował: 22 razy Układ równań nieoznaczony Post autor: BlackBomb » 2 lip 2014, o 21:37 Czy poprawna odpowiedź w takim razie to: \(\displaystyle{ \begin{cases} x=-3 \alpha +1 \\ y=1- \alpha \end{cases}}\) a4karo Użytkownik Posty: 20397 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Układ równań nieoznaczony Post autor: a4karo » 2 lip 2014, o 22:22 BlackBomb pisze:Czy poprawna odpowiedź w takim razie to: \(\displaystyle{ \begin{cases} x=-3 \alpha +1 \\ y=1- \alpha \end{cases}}\) Nie, raczej taka: \(\displaystyle{ \begin{cases} x=-3 \alpha +1 \\ y=1- \alpha \\ z=\alpha \end{cases}}\) -- 2 lip 2014, o 21:27 --bartek118 pisze: A to niby czemu ma być nieskończenie wiele tych \(\displaystyle{ t}\)? Czemu niby mają być rzeczywiste? Banalny przykład: \(\displaystyle{ \begin{cases} x-y = 0 \\ x+y=0 \end{cases}}\) jako układ nad ciałem \(\displaystyle{ \mathbb{F}_2}\). Ma on dokładnie dwa rozwiązania: \(\displaystyle{ (x_1, y_1) = (0,0)}\) oraz \(\displaystyle{ (x_2, y_2) = (1,1)}\). Ponadto wyznacznik układu jest zerowy, a jednak ma tylko skończenie wiele rozwiązań. Tak, racja. Ewidentnie któryś z nas zgubił kontekst . Michalinho Użytkownik Posty: 495 Rejestracja: 17 wrz 2013, o 16:13 Płeć: Mężczyzna Lokalizacja: Chełm Podziękował: 11 razy Pomógł: 104 razy Układ równań nieoznaczony Post autor: Michalinho » 2 lip 2014, o 23:06 Nie orientuje się czym jest ciało \(\displaystyle{ \mathbb{F}_2}\), ale z tego co wiem to \(\displaystyle{ 1+1 \neq 0}\). W sytuacji, w której nie miałbym w tym racji to i tak w \(\displaystyle{ \mathbb{R}}\) to nie jest spełnione.
Szczegóły Odsłony: 4309 Rozwiązywanie układów równań pierwszego stopnia z dwiema niewiadomymi metodą przeciwnych współczynników. Przykład 1 Rozwiąż metodą przeciwnych współczynników układ równań: a) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, wystarczy dowolne równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników, równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Po wyznaczeniu x wstawiamy otrzymane wyrażenie, czyli do pierwszego równania w miejsce niewiadomej x. Układ jest oznaczony, ma jedno rozwiązanie, którym jest para liczb . b) Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej y, pierwsze równanie pomnożymy przez , drugie pomnożymy przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej y, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Wyznaczamy niewiadomą y w drugim równaniu: Układ jest nieoznaczony, ma nieskończenie wiele rozwiązań. c) Porządkujemy układ równań: Musimy doprowadzić równania do takiej postaci, aby współczynniki przy niewiadomej x lub y były liczbami przeciwnymi np.: . Zauważamy, że najłatwiej przeciwne współczynniki można uzyskać przy niewiadomej x, wystarczy drugie równanie pomnożyć przez . Uzyskaliśmy przeciwne współczynniki przy niewiadomej x, w pierwszym równaniu współczynnik ten wynosi , w drugim . Po uzyskaniu przeciwnych współczynników równania układu dodajemy stronami: Otrzymane równanie, czyli dołączamy do dowolnego równania układu i otrzymujemy układ równań równoważny danemu: Otrzymaliśmy sprzeczność. Układ równań jest sprzeczny, brak rozwiązań. Obejrzyj rozwiązanie: Rozwiązywanie układów równań metodą przeciwnych współczynników - definicje, przykłady
- At you can join numerous contests with valuable prizes! - Joining the website also provides access to the Mathematics Knowledge Base – the database will be regularly expanded, and its content is under the guidance of mathematicians. - You can add your own math-related content. Once checked by the teachers, other website users will use them. - By adding your content on our website you have access to the equation editor! To join a contest, you must log in to your account at the website. Then open the "Contests" tab in the menu at the top of the site. This will open a list of contests. Clicking "View" will open the details of a selected contest. A description, prizes available to win, and contest entry topics are available there. Here you can select and book a topic for which you want to prepare a contest entry.
Zadanie blockedSprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl Sprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl a)3x-1=2x+(x-4) b)-x+2+(x+5)=4x-4(x+3) c)7-5(x+2)+3(x+3)=-2x+6 d)5(2x-3)-7x+15=3(x-8)+24 e)4x-22=14-(3x+2)-7(5-x) szkolnaZadaniaMatematyka Odpowiedzi (1) maalinkowa a)3x-1=2x+(x-4)3x-1=2x+x-40=-3b)-x+2+(x+5)=4x-4(x+3) -x+2+x+5=4x-4x-120=19c)7-5(x+2)+3(x+3)=-2x+6 7-5x-10+3x+9=-2x+60=0d)5(2x-3)-7x+15=3(x-8)+24 10x-15-7x+15=3x-24+240=0e)4x-22=14-(3x+2)-7(5-x)4x-22=14-3x-2-35+7x0=-1;) :) :) o 19:44
Definicja 1: Układem dwóch równań pierwszego stopnia z dwiema niewiadomymi x i y nazywamy koniunkcję takich równań i oznaczamy:{a1x + b1y=c1{a2x+b2y=c2Gdzie a12+b12>0 i a22+b22>0Definicja 2: Rozwiązaniem układu dwóch równań pierwszego stopnia z dwiema niewiadomymi nazywamy każdą parę liczb (x,y), która spełnia jednocześnie oba równania układu. Rozwiązać układ równań pierwszego stopnia z dwiema niewiadomymi to wyznaczyć wszystkie jego rozwiązania, albo stwierdzić , że zbiór rozwiązań jest mamy układ dwóch równań, które mają postać wzoru funkcji liniowej, to rozwiązać go znaczy po prostu znalezienie punktu wspólnego wykresów obu funkcji, w przypadku równania pierwszego stopnia takie rozwiązanie może być jedno, czyli wykresy przecinają się w wspólnym punkcie, nieskończenie wiele, czyli wykresy nachodzą na siebie, lub mogą nie mieć rozwiązania, czyli wykresy nigdy się nie spotykają. Na powyższym wykresie dwie proste przecinają się w jednym punkcie, współrzędne tego punktu (x, y) są jedynym rozwiązaniem układu równań. Jest to układ oznaczonyNa powyższym wykresie proste się pokrywają, czyli każda para liczb spełniające jedno z równań, spełnia też drugie, rozwiązań takiego układu jest nieskończenie wiele, jest to układ nieoznaczony. Na powyższym wykresie proste są równoległe, nigdy się nie spotkają, więc taki układ nie będzie miał rozwiązania, taki układ jest 1: Jeżeli z jednego równania układu wyznaczamy jedną niewiadomą i podstawimy otrzymane wyrażenie do drugiego równania zamiast tej niewiadomej, to układ równań złożony z pierwszego równania i tak przekształconego drugiego równania jest równoważny 1 Mamy układ równań , teraz staramy się obliczyć x lub y, w tym przypadku najłatwiej będzie obliczyć y., teraz nasz obliczony y podstawiamy do pierwszego równania. , teraz możemy obliczyć nasz x, pozostaje nam obliczyć y, w ten sposób obliczyliśmy x i 2: Jeśli obie strony jednego z równań pomnożymy przez dowolną liczbę różną od zera, a następnie otrzymane równanie drugie równanie dodamy stronami, i tak otrzymanym równaniem zastąpimy dowolne z równań układu, to otrzymamy układ równań równoważny 2Mamy układ równań:, teraz pomnóżmy równanie 2 razy 2, otrzymamy wtedy:, teraz dodajmy oba równania stronami:, możemy już bez problemu obliczyć x, teraz obliczmy y:, to są rozwiązania naszego układu równańKolejnym sposobem może być rozwiązanie układu równań za pomocą wyznacznika macierzy:, taki układ równań możemy zapisać w prostokątnej tablicy zwanej macierzą., jednak w praktyce lepiej posługiwać się macierzą kwadratową (na studiach ogarniesz czemu J), w tym przypadku będzie to wyglądało tak:, , , z macierzy kwadratowej można obliczyć jej 3: Wyznacznikiem macierzy nazywamy liczbę ad-cb, którą oznaczamy(Pamiętaj że symbol macierzy różni się od symbolu wyznacznika macierzy.) Przykład 3 Oblicz wyznacznik macierzy Korzystając ze wzoru z definicji mamy:5*3-(-5*2)=15-(-10)=15+10=25Wróćmy do naszego układu równań: , a12+b12>0 i a22+b22>0 Wprowadźmy teraz pewne oznaczenia:W= Wx= Wy=Twierdzenie 3: Układ równań pierwszego stopnia z dwiema niewiadomymi , a12+b12>0 i a22+b22>0 Ma tylko jedno rozwiązanie, jeśli W≠0, jest to układ Cramera Ma nieskończenie wiele rozwiązań, jeśli W=Wx=Wy=0Nie ma rozwiązań, jeśli W=0 i (Wx≠0 lub Wy≠0)Przykład 4 Rozwiąż układ równań:Zaczynamy od obliczenia wyznaczników:W= Wx= Wy= W= 11*(-34) –((-22)*32)=-374+704=330Wx=68*(-34)-(8*32)=-2312-256=-2568Wy=11*8-((-22)*68)=88+1496=1584x= y=Zadania do zrobienia1. Rozwiąż układy równań metodą podstawiania Odp. 2. Rozwiąż układy równań metodą przeciwnych współczynników Odp. układ sprzeczny3. Rozwiąż układy równań metodą graficzną Odp. 4. Rozwiąż układy równań, stosując wyznaczniki a) b) Odp. a) b)5. Dopisz brakujące równanie układu tak, aby powstały układ równań: a) był sprzecznyb) był nieoznaczonyc) był oznaczony
układ równań ma nieskończenie wiele rozwiązań jeśli